综合题15.0分
物理

12.如图所示,在倾角为30°的斜面OA的左侧有一竖直挡板,其上有一小孔P,现有一质量m=4×10-20kg、带电荷量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向里的一正三角形区域.该粒子在运动过程中始终不碰及竖直挡板,且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:

(1)粒子在磁场中做圆周运动的半径;

(2)粒子在磁场中运动的时间;

(3)正三角形磁场区域的最小边长.

正确答案及相关解析

正确答案

(1)0.3m

(2)

(3)0.15m

解析

(1)粒子在磁场中,由洛伦兹力提供向心力,根据牛顿第二定律得

f=      ……①

代入题给数据解得r=0.3m

(2)带电粒子在磁场中匀速圆周运动的周期:T==    ……②

画出粒子运动轨迹如图所示,由几何关系可知,△OPQ为等边三角形,故转过的圆心角:θ=60°。

运动的时间为:t== ,代入数据解得:t=

(3)当粒子的轨迹圆正好以PQ为直径时,圆形磁场区域的半径最小,根据几何知识得知,PQ=r,则磁场最小的半径为Rmin=r/2=0.15m

考查方向

本题考查带电粒子在磁场中的运动。

解题思路

(1)粒子在磁场中,由洛伦兹力提供向心力,根据牛顿第二定律求出粒子在磁场中做圆周运动的半径,并由圆周运动公式求出周期;

(2)画出粒子运动的轨迹,由几何知识得到轨迹对应的圆心角θ,由t=求出粒子在磁场中运动的时间;

(3)当粒子的轨迹圆正好以PQ为直径时,圆形磁场区域的半径最小,则知最小半径的值

易错点

有界磁场中带电粒子运动轨迹的几何关系。

知识点

带电粒子在匀强磁场中的运动