已知函数
27.设
28.证明:存在,使得
在区间
内恒成立,且
在
内有唯一解.
当时,
在区间
上单调递增, 在区间
上单调递减;当
时,
在区间
上单调递增.【考查方向】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.
由已知,函数的定义域为
,
,
所以.
当时,
在区间
上单调递增,
在区间
上单调递减;
当时,
在区间
上单调递增.
首先对函数求导,得
,然后再求导得
.利用导数的符号即得其单调性.此题分
和
两种情况讨论.
不会确定分类的标准导致出错或不分类;
详见解析.
由,解得
.
令.
则,.
故存在,使得
.
令,.
由知,函数
在区间
上单调递增.
所以.
即.
当时,有
要使得在区间
内恒成立,且
在
内有唯一解,则这个解
应为极小值点,且极小值为0
.所以我们应考虑求
的极小值.由
,解得
,代入
得
.是否存在令
使得
呢?为此,令
.
因为,故存在
,使得
找不到解决问题的思路导致无法入手。