综合题15.0分
物理

13.请从33-35题中选择一题作答。

33.[物理——选修3-3]

(1)下列说法正确的是(   )(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分)

A.遵守热力学第一定律的过程一定都能实现

B.气体的温度变化时,其分子平均动能也随之改变;

C.功可以全部转化为热,但热量不能全部转化为功

D.做功和热传递是改变物体内能的两种方式

E.一定质量的理想气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加。

(2)一端开口的极细玻璃管开口朝下竖直立于水银槽的水银中,初始状态管内外水银面的高度差为l0=62cm,系统温度27℃。因怀疑玻璃管液面上方存在空气,现从初始状态分别进行两次试验如下:①保持系统温度不变,将玻璃管竖直向上提升2cm(开口仍在水银槽液面以下),结果液面高度差增加1cm;②将系统温度升到77℃,结果液面高度差减小1cm。已知玻璃管内粗细均匀,空气可看成理想气体,热力学零度可认为为-273℃。求:

(i)实际大气压为多少cmHg?

(ii)初始状态玻璃管内的空气柱有多长? 

34.[物理——选修3-4]

(1)如图所示,实线是沿x轴传播的一列简谐横波在t= 0时刻的波形图,虚线是这列波在t=0.2s时刻的波形图。已知该波的波速是0.8m/s ,则下列说法正确的是(    )

A.这列波的波长是14cm

B.这列波的周期是0.125s

C.这列波可能是沿x轴正方向传播的

D.t =0时,x=4 处的质点速度沿y轴负方向

(2)如图所示,一玻璃砖的横截面为半圆形,MN为截面的直径,Q是MN上的一点且与M点的距离QM=R/2(R为半圆形截面的半径),且与水平光屏P平行,两者的距离为d,一束与截面平行的红光由 Q点沿垂直于MN的方向射入玻璃砖,从玻璃砖的圆弧面射出后,在光屏上得到红光.玻璃砖对该红光的折射率为n=(3)1/2,求:

①红光由于玻璃砖的折射在屏上向什么方向移动?移动距离是多少?

②如果保持入射光线和光屏的位置不变,而使玻璃砖沿MN向左移动,移动的距离小于R/2,请定性说明屏上的光点如何移动?亮度如何变化? 

35.[物理——选修3-5]

(1)质量为m的小球A以速度v在光滑水平面上运动,与质量为2m的静止小球B发生对心碰撞,则碰撞后A球的速度vA和B球的速度vB可能为(   )

A .vA=-v/3     vB=2v/3     

B .vA=2v/5 vB=7v/10   

C .vA=-v/4   vB=5v/8     

D .vA=3v/8 vB=5v/16 

(2).如图所示,两个木块的质量分别为m1=0.2kg、m2=0.6kg中间用轻弹簧相连接放在光滑的水平面上处于静止状态,且m1左侧靠一固定竖直挡板。某一瞬间敲击木块m2使其获得0.2m/s的水平向左速度,木块m2向左压缩弹簧然后被弹簧弹回,弹回时带动木块m1运动。求: 

①当弹簧拉伸到最长时,木块m1的速度多大?

②在以后的运动过程中,木块m1速度的最大值为多少?

正确答案及相关解析

正确答案

33.(1)BDE

第二问:(1)75cmHg (2)12cm

34.(1)D

(2)① 向左移动,移动距离为② 当玻璃砖左移时,入射角增大,折射角增大,所以光点左移,亮度减弱至消失

35.(1)AC        

(2)① 0.15m/s ②0.3m/s

解析

33.(1):热学过程除了要受到能量守恒定律的制约外,还具有方向性.A错误;物体的内能是分子热运动的动能和分子间的势能之和,而气体的内能是分子热运动的动能之和,B正确;若一个物体在由运动变为静止,他的动能就全部转化为热能了,前半句正确。后半句是教材上的原话,开尔文表述没有排除热量可以完全转化为功,但必然要发生其他变化,选项C错。D选项是教材原文,正确;气体压强产生的原因是大量气体分子对容器壁的持续的、无规则撞击产生的。气体压强与温度和体积有关。温度越高,气体压强越大,反之则气体压强越小。题目中表述为“一定量的气体”,“压强不变”,在此前提下,一定量的气体,表示分子个数不变,温度降低而压强不变时,体积必会缩小,即单位体积内的分子个数增加了,换个说法,也就是表示分子的密度增大了,当然碰撞容器壁的机率就增大了,E正确。

(2)设大气压强相当于高为H的水银柱产生压强,初始空气柱的长度为x

则由理想气体状态方程第一次试验,由波意尔定律有:

H-l0x=(H-l0-1)(x+2-1)    ……①

第二次试验:                           ……②

式中T1T2分别为300K和350K,

依据两式可求得:H=75cm,x=12cm

故实际大气压为75cmHg,

初始空气柱长12cm 

34. (1)由题图易知波长λ=0.12m,结合波速v=0.8m/s,可知该波的周期T=λ/v=0.15s,A、B选项错误;0.2s时间间隔为

考查方向

33.(1)本题考查热力学定律,分子动理论的基本观点,气体热现象的微观观点等知识点,简单题。

(2)理想气体的状态方程。

34. (1)本题考查横波的图象;波长、频率和波速的关系;

(2)折射定律,全反射

35. (1)动量守恒定律,碰撞中的能量守恒;

(2)考查学生应用动量守恒定律,能量守恒定律及牛顿运动定律的综合应用解决物理问题的能力。解决本题首先要明确研究的过程,其次把握隐含的条件:弹簧伸长最长时两木块的速度相同。

解题思路

33.(1)掌握基础知识,逐一排查。

(2)第一次试验封闭气体做等温变化,根据管内外水银面的高度差,求出被封闭气体的压强,然后根据等温变化气态方程即可求解.

第二次试验找出初末状态参量,利用理想气体状态方程即可求解

34.(1)由图读出波长,求出周期,根据时间t=0.8s与周期的关系判断波的传播方向,并判断t=0.8s时,x=1.8m处的质点速度方向;分析质点P在0.95s时的位置,确定其位移;分析质点P在1.0s时刻的状态,分析速度与加速度方向的关系.

(2)根据折射定律做出光路图,在穿出玻璃砖时,考虑全反射即可

35.(1)A、B组成的系统在水平方向上动量守恒,故而mv=mvA+2mvB,系统初始能量:,系统碰撞后的动量应为mv,能量不大于,将ABCD依次代入检验即可;

(2)①先研究木块m2向左压缩弹簧到弹簧第一次恢复原长的过程,根据机械能守恒可得到此时木块m2的速度为v0=0.2m/s。此后,弹簧开始伸长,当弹簧拉伸最长时,木块m1、m2速度相同,设为v,由动量守恒定律可求得v;

②当弹簧再次恢复到原长时,m1获得最大速度,再对弹簧和两个木块组成的系统动量守恒和机械能守恒列方程,求解木块m1速度的最大值。

易错点

33.(1)热学过程除了要受到能量守恒定律的制约外,还具有方向性;

(2)物体内能与气体内能的区别;

(3)功能转化的原理

34.(1)波形图的平移

(2)当光线从光密介质向光疏介质传播时,才会发生全反射现象

35.(1)① 总动量的方向性;② 系统碰撞后的机械能不会大于碰撞前的机械能;③ A物体碰撞后的速度不会大于B物体碰撞后的速度。

(2)系统动量守恒的条件:在m1物体未脱离挡板前,两物体组成的系统动量不守恒,但机械能守恒。m1物体离开墙面后系统动量守恒,机械能守恒。

知识点

物体的内能 热量 热力学第一定律