19.如图,在直三棱柱中,底面
是正三角形,点
是
的中点,
.
(Ⅰ)求证:平面
;
(Ⅱ)试在棱上找一点
,使得
,并说明理由.
请考生在第22.23.24三题中任选一题做答,如果多做,则按所做的第一题记分.
22.如图,已知是
的切线,
为切点,
是
的割线,与
交于B、C两点,圆心O在
的内部,点M是BC的中点。
(1)证明A,P,O,M四点共圆;
(2)求的大小。
23.选修4-4:坐标系与参数方程
过点作倾斜角为
的直线
与曲线
交于A,B两点。
(1)写出直线的参数方程;
(2)求的取值范围;
(3)求的最小值.
24.设对于任意实数x,不等式≥m恒成立.
(I)求m的取值范围;
(Ⅱ)当m取最大值时,解关于x的不等式:.
6.已知数列的前
项和
,则数列
( )
18.在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形。
(1)求证:平面DEC⊥平面BDE;
(2)求二面角C—BE—D的余弦值。
(Ⅰ)(略)
试题分析:本题属于立体几何中线面关系的位置关系的问题,难度不大,只要熟悉了线面关系中平行与垂直的判定和性质定理,即可完成。
(Ⅰ)连结,交
于点
,连结
.
在中,
为
中点.
又因为为
中点,所以
.
因为平面
,
平面
,
所以
本题主要考查直线与直线、直线与平面及平面与平面的位置关系,
解题步骤如下:由线线平行推出线面平行;由面面垂直推出线面垂直,从而得出线线垂直。
第一问在书写时易遗漏平面
,
平面
这些条件,
第二问在线面垂直的转化中易混淆不清。