8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为()
9.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线
,终边为射线
,过点
作直线
的垂线,垂足为
,将点
到直线
的距离表示为
的函数
,则
=
在[0,
]上的图像大致为()
15.当x∈R,|x|<1时,有如下表达式:
1+x+x2+…+xn+…=.
两边同时积分得:,
从而得到如下等式:
.
请根据以上材料所蕴含的数学思想方法,计算:
________。
16.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°- sin2(-18°)cos48°
(5)sin2(-25°)+cos255°- sin2(-25°)cos55°
(1) 试从上述五个式子中选择一个,求出这个常数
(2) 根据(1)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.
19.设,
分别是椭圆
的左右焦点,M是C上一点且
与x轴垂直,直线
与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b。
20.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移
个单位长度后得到函数g(x)的图象。
(1)求函数f(x)与g(x)的解析式;
(2)是否存在x0∈,使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2 013个零点。
21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题计分。
(1)(本小题满分7分)选修4-2:矩阵与变换
设矩阵 (其中
,
)。
①若,
,求矩阵
的逆矩阵
;
②若曲线在矩阵
所对应的线性变换作用下得到曲线
:
,求
的值。
(2)(本小题满分7分)选修4—4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为,直线l的极坐标方程为ρ
=a,且点A在直线l上。
①求a的值及直线l的直角坐标方程;
②圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系。
(3)(本小题满分7分)选修4-5:不等式选讲:解不等式∣2x-1∣<∣x∣+1