20.已知椭圆上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
。
(Ⅰ)求椭圆的方程;
(Ⅱ)点和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,证明:
,
,
三点共线。
(1)椭圆C的方程为
本题属于直线与椭圆关系的基本问题,题目的难度是逐渐由易到难,
(1)根据题目条件和a、b、c的关系可求
(2)设出两个交点的坐标
(3)根据已知条件,求出斜率关系,最后得出结论。
解:(I)由已知可得a-c=2,b=,又
,解得a=4。故所求椭圆C方程为
.(II)由(I)知A(-4,0),B(4,0),设P(
),Q(
),所以
。
因为P()在椭圆C上,所以
即
,所以
。又因为
所以
①。由已知点Q(
)在圆
上,AB为圆直径,所以
,所以
本题考查了椭圆的基本性质以及直线与椭圆的位置关系等知识点,考查了学生分析问题与思考问题的能力,直线与圆锥曲线(特别是椭圆)的关系,是高考的重点内容,涉及的知识点较多,运算也比较复杂,对学生的运算能力有较高的要求,有时会与向量、距离、基本不等式、一元二次方程根与系数关系交汇在一起。
1、椭圆中a、b、c的关系会与双曲线中的搞错
2、第二问证三点共线,通常是证有公共点的两条直线的斜率相等(或者是采用向量的方法)