22.如图,
曲线由两个椭圆
:
和椭圆
:
组成,
当成等比数列时,称曲线
为“猫眼曲线”.
(1)若猫眼曲线过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为
,交椭圆
所得弦的中点为
,求证:
为与
无关的定值;
(3)若斜率为的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
(1),
;
(2)略;
(3).
(1),
,
,
;
(2)设斜率为的直线交椭圆
于点
,
线段中点
由
,
得
存在且
,
,
本题主要考查椭圆的标准方程与性质,考查椭圆与直线的位置关系,考查化简运算能力与对新定力的概念的即时学习能力.
(1)根据定义求得猫眼曲线Γ的方程;
(2)设交点,由中点公式可得
,联立方程,化简可得
,同理可得
,两式相除消去
,即证
为与
无关的定值
;
(3)设直线的方程为
,联立方程,化简,从而可得
的方程,同理可得
的方程,再利用两平行线间距离表示三角形的高,再求|AB|,从而求得最大面积.
1.对新定义的“猫眼曲线”的概念的不理解,即时学习能力不够;
2.解析几何中繁琐的化简容易出错,特别是带字母的化简运算.