20.椭圆与的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,与的四个焦点构成的四边形面积是.
(1)求椭圆与的方程;
(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点,的连线,分别与椭圆交于点,.
①求证:直线,斜率之积为常数;
②直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
(1);
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意对参数的讨论.
解:(1)依题意,
设:,
:,
由对称性,四个焦点构成的四边形为菱形,
且面积,
解得:,
所以椭圆:,:
(2)①设,
则,,
本题考查了椭圆的标准方程和直线与椭圆的位置关系,属于高考中的高频考点.
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
1、利用e及对称性求a,b。
2、联立直线与椭圆方程求解。
第二问中表示直线斜率时容易出错。